Global fits for deep inelastic scattering and related processes

Nobuo Sato

ODU/JLab

2019 Fall Meeting of the APS
Division of Nuclear Physics

Outline

■ Motivations
■ Global QCD analysis in a nutshell
■ Regression strategies
■JAM 19

Motivations

Motivations

hadrons as emergent phenomena of QCD

quarks and gluons

Motivations

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

Motivations

hadrons as emergent phenomena of QCD

nucleon structure

quarks and gluons

hadronization

Motivations

Motivations

Motivations

Motivations

Motivations

■ Quark and gluon d.o.f. cannot be measured directly

Motivations

■ Quark and gluon d.o.f. cannot be measured directly

■ Experimental measurements can be interpreted in terms of quark and gluon d.o.f.

Motivations

The interpretation relies on:

Motivations

The interpretation relies on:
$■$ QCD factorization theorems (theory)

Motivations

The interpretation relies on:
$■$ QCD factorization theorems (theory)
■ Experimental cross section measurements

Motivations

The interpretation relies on:
$■$ QCD factorization theorems (theory)
■ Experimental cross section measurements
■ Global QCD analysis (Bayesian regression)

Motivations

The strategy:

Motivations

The strategy:

1. Define nucleon structure/hadronization objects in QFT

Motivations

The strategy:

1. Define nucleon structure/hadronization objects in QFT
2. Identify cross sections that factorize in terms of such QFT objects

Motivations

The strategy:

1. Define nucleon structure/hadronization objects in QFT
2. Identify cross sections that factorize in terms of such QFT objects
3. Perform a global QCD analysis

Motivations

What do we mean by "structure of nucleon"? e.g.

Motivations

What do we mean by "structure of nucleon"? e.g.

$$
f_{j / h}(\xi)=\int \frac{d w^{-}}{2 \pi} e^{-i \xi P^{+} w^{-}}\langle P| \bar{\psi}_{j}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} \psi_{j}(0)|P\rangle
$$

Motivations

What do we mean by "structure of nucleon"? e.g.
$f_{j / h}(\xi)=\int \frac{d w^{-}}{2 \pi} e^{-i \xi P^{+} w^{-}}\langle P| \bar{\psi}_{j}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} \psi_{j}(0)|P\rangle$

■ Not currently computable from first principles

Motivations

What do we mean by "structure of nucleon"? e.g.
$f_{j / h}(\xi)=\int \frac{d w^{-}}{2 \pi} e^{-i \xi P^{+} w^{-}}\langle P| \bar{\psi}_{j}\left(0, w^{-}, \mathbf{0}_{\mathrm{T}}\right) \frac{\gamma^{+}}{2} \psi_{j}(0)|P\rangle$

■ Not currently computable from first principles
■ Needs to be inferred from data

Motivations

What do we mean by "hadronization"? e.g.

Motivations

What do we mean by "hadronization"? e.g.

$$
\begin{aligned}
d_{h / j}(\zeta) & =\frac{\operatorname{Tr}_{\text {color }, \text { Dirac }}}{4 N_{c, j}} \sum_{X} \zeta \int \frac{d w^{+}}{2 \pi} e^{i\left(p_{h}^{-} / \zeta\right) w^{+}} \\
& \times \gamma^{-}\langle 0| \bar{\psi}_{j}\left(0, w^{+}, \mathbf{0}_{\mathrm{T}}\right)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| \psi_{j}(0)|0\rangle
\end{aligned}
$$

Motivations

What do we mean by "hadronization"? e.g.

$$
\begin{aligned}
d_{h / j}(\zeta) & =\frac{\operatorname{Tr}_{\text {color,Dirac }}}{4 N_{c, j}} \sum_{X} \zeta \int \frac{d w^{+}}{2 \pi} e^{i\left(p_{h}^{-} / \zeta\right) w^{+}} \\
& \times \gamma^{-}\langle 0| \bar{\psi}_{j}\left(0, w^{+}, \mathbf{0}_{\mathrm{T}}\right)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| \psi_{j}(0)|0\rangle
\end{aligned}
$$

■ Not currently computable from first principles

Motivations

What do we mean by "hadronization"? e.g.

$$
\begin{aligned}
d_{h / j}(\zeta) & =\frac{\operatorname{Tr}_{\text {color,Dirac }}}{4 N_{c, j}} \sum_{X} \zeta \int \frac{d w^{+}}{2 \pi} e^{i\left(p_{h}^{-} / \zeta\right) w^{+}} \\
& \times \gamma^{-}\langle 0| \bar{\psi}_{j}\left(0, w^{+}, \mathbf{0}_{\mathrm{T}}\right)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| \psi_{j}(0)|0\rangle
\end{aligned}
$$

■ Not currently computable from first principles
$■$ Needs to be inferred from data

Motivations

Acronyms for 1D distributions

Motivations

Acronyms for 1D distributions
■ $f_{j / h}(\xi)$: "Parton Distribution Functions" PDFs

Motivations

Acronyms for 1D distributions
■ $f_{j / h}(\xi)$: "Parton Distribution Functions" PDFs

■ $d_{h / j}(\zeta)$: "Fragmentation Functions"
FFs

Motivations

What do we mean by "factorization"? e.g DIS

Motivations

What do we mean by "factorization"? e.g DIS

$$
F_{2}(x, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} \quad C_{2}(\xi, \mu) \quad f_{j}\left(\frac{x}{\xi}, \mu\right)
$$

Motivations

What do we mean by "factorization"? e.g DIS
$F_{2}(x, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} C_{2}(\xi, \mu) \quad f_{j}\left(\frac{x}{\xi}, \mu\right)$
C_{2} is calculable in perturbative QCD

Motivations

What do we mean by "factorization"? e.g DIS
$F_{2}(x, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} C_{2}(\xi, \mu) \quad f_{j}($
C_{2} is calculable in perturbative QCD
f_{j} cannot be solved in closed form \rightarrow inverse problem

Motivations

Another example: SIDIS

$$
F_{1}^{h}(x, z, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} \int_{z}^{1} \frac{d \zeta}{\zeta} C_{1}(\xi, \zeta, \mu) \quad f_{j}\left(\frac{x}{\xi}, \mu\right) \quad d_{j}\left(\frac{z}{\zeta}, \mu\right)
$$

Motivations

Another example: SIDIS

$$
F_{1}^{h}(x, z, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} \int_{z}^{1} \frac{d \zeta}{\zeta} C_{1}(\xi, \zeta, \mu) \quad f_{j}\left(\frac{x}{\xi}, \mu\right) \quad d_{j}\left(\frac{z}{\zeta}, \mu\right)
$$

Motivations

Another example: SIDIS

$$
F_{1}^{h}(x, z, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} \int_{z}^{1} \frac{d \zeta}{\zeta} C_{1}(\xi, \zeta, \mu) f_{j}\left(\frac{x}{\xi}, \mu\right) d_{j}\left(\frac{z}{\zeta}, \mu\right)
$$

C_{1} is calculable in perturbative QCD

Motivations

Another example: SIDIS
$F_{1}^{h}(x, z, Q)=x \sum_{j} e_{j}^{2} \int_{x}^{1} \frac{d \xi}{\xi} \int_{z}^{1} \frac{d \zeta}{\zeta} C_{1}(\xi, \zeta, \mu) \quad f_{j}\left(\frac{x}{\xi}, \mu\right) d_{j}\left(\frac{z}{\zeta}, \mu\right)$

- C_{1} is calculable in perturbative QCD
- f_{j} and d_{j} cannot be solved in closed form \rightarrow inverse problem

Motivations

Universality \rightarrow the predictive power of QCD

Motivations

Universality \rightarrow the predictive power of QCD

$$
\sigma_{l+P \rightarrow l+X}^{\mathrm{EXP}}=C_{l+k \rightarrow l+X} \otimes f
$$

Motivations

Universality \rightarrow the predictive power of QCD

$$
\begin{aligned}
\sigma_{l+P \rightarrow l+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+X} \otimes f \\
\sigma_{l+P \rightarrow l+H+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+k+X} \otimes f \otimes d
\end{aligned}
$$

Motivations

Universality \rightarrow the predictive power of QCD

$$
\begin{aligned}
\sigma_{l+P \rightarrow l+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+X} \otimes f \\
\sigma_{l+P \rightarrow l+H+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+k+X} \otimes f \otimes d \\
\sigma_{P+P \rightarrow l+\bar{l}+X}^{\mathrm{EXP}} & =C_{k+k \rightarrow l+\bar{l}+X} \otimes f \otimes f
\end{aligned}
$$

Motivations

Universality \rightarrow the predictive power of QCD

$$
\begin{aligned}
\sigma_{l+P \rightarrow l+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+X} \otimes f \\
\sigma_{l+P \rightarrow l+H+X}^{\mathrm{EXP}} & =C_{l+k \rightarrow l+k+X} \otimes f \otimes d \\
\sigma_{P+P \rightarrow l+\bar{l}+X}^{\mathrm{EXP}} & =C_{k+k \rightarrow l+\bar{l}+X} \otimes f \otimes f \\
\sigma_{l+\bar{l} \rightarrow H+X}^{\mathrm{EXP}} & =C_{l+\bar{l} \rightarrow k+X} \otimes d
\end{aligned}
$$

Global QCD analysis in a nutshell

Global QCD analysis in a nutshell

1. Parametrize f 's and d 's

Global QCD analysis in a nutshell

1. Parametrize f 's and d 's

$$
\begin{aligned}
& f_{j}(\xi)=N_{j} \xi^{a_{j}}(1-\xi)^{b_{j}} P\left(\xi ; \boldsymbol{w}_{j}\right) \\
& d_{j}(\zeta)=\tilde{N}_{j} \zeta^{a_{j}}(1-\zeta)^{\tilde{b}_{j}} P\left(\zeta ; \tilde{\boldsymbol{w}}_{j}\right)
\end{aligned}
$$

Global QCD analysis in a nutshell

1. Parametrize f 's and d 's

$$
\begin{gathered}
f_{j}(\xi)=N_{j} \xi^{a_{j}}(1-\xi)^{b_{j}} P\left(\xi ; \boldsymbol{w}_{j}\right) \\
d_{j}(\zeta)=\tilde{N}_{j} \zeta^{\tilde{a}_{j}}(1-\zeta)^{\tilde{b}_{j}} P\left(\zeta ; \tilde{\boldsymbol{w}}_{j}\right) \\
\boldsymbol{p}=\left(\ldots, N_{j}, a_{j}, b_{j}, \boldsymbol{w}_{j} \ldots, \tilde{N}_{j}, \tilde{a}_{j}, \tilde{b}_{j}, \tilde{\boldsymbol{w}}_{j}, \ldots\right)
\end{gathered}
$$

Global QCD analysis in a nutshell

2. Sample the Bayesian posterior distribution

Global QCD analysis in a nutshell

2. Sample the Bayesian posterior distribution

$$
\rho(\boldsymbol{p} \mid \text { data }) \propto \mathcal{L}(\boldsymbol{p}, \text { data }) \pi(\boldsymbol{p})
$$

Global QCD analysis in a nutshell

2. Sample the Bayesian posterior distribution

$$
\begin{gathered}
\rho(\boldsymbol{p} \mid \text { data }) \propto \mathcal{L}(\boldsymbol{p}, \text { data }) \pi(\boldsymbol{p}) \\
\mathrm{E}[\mathcal{O}]=\frac{1}{N} \sum_{k} \mathcal{O}\left(\boldsymbol{p}_{k}\right) \quad \mathrm{V}[\mathcal{O}]=\frac{1}{N} \sum_{k}\left[\mathcal{O}\left(\boldsymbol{p}_{k}\right)-\mathrm{E}[\mathcal{O}]\right]^{2}
\end{gathered}
$$

Global QCD analysis in a nutshell

2. Sample the Bayesian posterior distribution

$$
\begin{aligned}
& \rho(\boldsymbol{p} \mid \text { data }) \propto \mathcal{L}(\boldsymbol{p}, \text { data }) \pi(\boldsymbol{p}) \\
& \mathrm{E}[\mathcal{O}]=\frac{1}{N} \sum_{k} \mathcal{O}\left(\boldsymbol{p}_{k}\right) \quad \mathrm{V}[\mathcal{O}]=\frac{1}{N} \sum_{k}\left[\mathcal{O}\left(\boldsymbol{p}_{k}\right)-\mathrm{E}[\mathcal{O}]\right]^{2} \\
& \mathcal{O}=f, d, \sigma, \ldots
\end{aligned}
$$

Global QCD analysis in a nutshell

Global QCD analysis in a nutshell

"regression"

Regression strategies

Regression strategies

■ Maximum likelihood (CJ, CT, MMHT, ...)

Regression strategies

■ Maximum likelihood (CJ, CT, MMHT,...)

$$
\mathrm{E}[\mathcal{O}]=\frac{1}{N} \sum_{k} \mathcal{O}\left(\boldsymbol{p}_{k}\right) \sim \mathcal{O}\left(\boldsymbol{p}_{0}\right)
$$

Regression strategies

■ Maximum likelihood (CJ, CT, MMHT,...)

$$
\begin{aligned}
\mathrm{E}[\mathcal{O}] & =\frac{1}{N} \sum_{k} \mathcal{O}\left(\boldsymbol{p}_{k}\right) \sim \mathcal{O}\left(\boldsymbol{p}_{0}\right) \\
\mathrm{V}[\mathcal{O}] & =\frac{1}{N} \sum_{k}\left[\mathcal{O}\left(\boldsymbol{p}_{k}\right)-\mathrm{E}[\mathcal{O}]\right]^{2} \\
& =\text { hessian, lagrange }
\end{aligned}
$$

Regression strategies

■ Data resampling (JAM, NNPDF)

Regression strategies

■ Data resampling (JAM, NNPDF)

+ Generate N resampled data $\quad \sigma_{i, k}=\sigma_{i}+R_{i, k} \delta \sigma_{i}$

Regression strategies

■ Data resampling (JAM, NNPDF)

+ Generate N resampled data $\quad \sigma_{i, k}=\sigma_{i}+R_{i, k} \delta \sigma_{i}$
$+\left\{\boldsymbol{p}_{k}: 1 \ldots N\right\}$ from N fits to resampled data

Regression strategies

■ Data resampling (JAM, NNPDF)

+ Generate N resampled data $\quad \sigma_{i, k}=\sigma_{i}+R_{i, k} \delta \sigma_{i}$
$+\left\{\boldsymbol{p}_{k}: 1 \ldots N\right\}$ from N fits to resampled data
+ Use flat priors as guess for the N fits

Regression strategies

Other approaches

Regression strategies

Other approaches

+ Hybrid Markov Chain (Gbedo, Mangin-Brinet)

Regression strategies

Other approaches

+ Hybrid Markov Chain (Gbedo, Mangin-Brinet)
+ Nested sampling (JAM)
\rightarrow challenging for higher dimensions $O(100)$

JAM19: "A less strange proton"

arXiv:1905.03788

NS, Andres, Ethier, Melnitchouk

Session KH: Nucleon Structure I
9:50AM , Wednesday, October 16, 2019
Room: Salon B

The JAM 19 challenge

■ Simultaneous extraction of $f s$ and $d s$

■ Dimension of parameter space is $\mathcal{O}(100)$
$■$ NLL evaluation ~ 1 min per point in parameter space

JAM19 multi-step strategy PDFs

+DIS (No HERA)

JAM19 multi-step strategy PDFs

+DIS (No HERA)
+DIS HERA

JAM19 multi-step strategy PDFs

+DIS (No HERA)
+DIS HERA
+DY

JAM19 multi-step strategy PDFs pion FFs

+DIS (No HERA)
+SIA pions
+DIS HERA
+DY

JAM19 multi-step strategy PDFs pion FFs

> +DIS (No HERA)
> +DIS HERA
> +DY

JAM19 multi-step strategy PDFs
 kaon FFs pion FFs

+DIS (No HERA)
+DIS HERA
+DY

Discriminating multiple solutions

Discriminating multiple solutions

Discriminating multiple solutions

u_{v}

Discriminating multiple solutions

k-means clustering
k-means clustering: 2D example
k-means clustering: 2D example
e.g $f(x)=x^{\alpha}(1-x)^{\beta}$

k-means clustering: 2D example

e.g $f(x)=x^{\alpha}(1-x)^{\beta}$

k-means clustering: 2D example

e.g $f(x)=x^{\alpha}(1-x)^{\beta}$

adjust centroids

data over theory

Z

$\bar{s} \rightarrow K^{+}$

Comparison with other groups

Comparison with other groups

$\begin{array}{ll}\checkmark & \operatorname{DIS}(p, d) \\ \checkmark & \text { DY }(p p, p d) \\ \checkmark & \operatorname{SIA}\left(\pi^{ \pm}, K^{ \pm}\right) \\ \checkmark & \operatorname{SIDIS}\left(\pi^{ \pm}, K^{ \pm}\right)\end{array}$

Strong strange suppression

Comparison with other groups

Strong strange suppression

Comparison with other groups

Summary and outlook

$■$ Understanding hadrons as emergent phenomena of QCD

Summary and outlook

■ Understanding hadrons as emergent phenomena of QCD

+ Factorization theorems

Summary and outlook

■ Understanding hadrons as emergent phenomena of QCD

+ Factorization theorems
+ Experimental cross sections

Summary and outlook

■ Understanding hadrons as emergent phenomena of QCD

+ Factorization theorems
+ Experimental cross sections
+ Global analysis of nucleon structures and hadronization

Summary and outlook

■ Challenges of the inverse problem

Summary and outlook

■ Challenges of the inverse problem

+ Efficient sampling of the posterior distribution

Summary and outlook

■ Challenges of the inverse problem

+ Efficient sampling of the posterior distribution
+ Identification of the best solution

Summary and outlook

■ Challenges of the inverse problem

+ Efficient sampling of the posterior distribution
+ Identification of the best solution
+ Treatment of non compatible data sets (not discussed in this talk)

Summary and outlook

■ Next generation of global analysis tools using Machine Learning

Summary and outlook

■ Next generation of global analysis tools using Machine Learning

+ M. Kuchera Session FE: Mini-Symposium: Towards a US Electron Ion Collider: Physics, Accelerator, and Detectors II 11:00 AM, Tuesday, October 15, 2019
Room: Salon 5

Summary and outlook

$■$ Next generation of global analysis tools using Machine Learning

+ M. Kuchera Session FE: Mini-Symposium: Towards a US Electron Ion Collider: Physics, Accelerator, and Detectors II 11:00 AM, Tuesday, October 15, 2019
Room: Salon 5
+ M. Houk \& E. Tsitinidi Session HA: Conference Experience for Undergraduates Poster Session
4:00 PM, Tuesday, October 15, 2019
Room: Salon 1

