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Problems in the use of the   method to fit
event histograms, when the normalization is one
of the fit parameters appears every few years in

experimental studies and has caused some
confusion. It appeared in our MiniBooNE

experiment in 2015.  In Great Britain it was
known as Peelle’s Pertinent Puzzle (PPP)

and this puzzle was also found in 1996 by an 
Italian physicist who has made significant

contributions to the statistics used by physicists.

χ2
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The puzzle is that in a χ2 fit, if overall 
normalization is one of the parameters to be 

fit, the fitted curve may be seriously high 
with respect to the data points,  sometimes 

above all of them. 
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This problem and the solution for it are well 
known within the statistics community, 

but, apparently, not well known among some 
of the physics community. The purpose of this 

talk is didactic, to explain the cause of the 
problem and the easy and elegant solution. 
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The solution is to use  maximum likelihood (ML)
instead of . The essential difference between

the two approaches is that ML uses the
normalization of each term in the  assuming 

it is a normal distribution . 
The normalization is applied to the theoretical

expectation, not to the data so  and
the normalization changes as the expectation

value changes.

χ2

χ2

1/ 2πσ2

σ2 = N
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We illustrate what goes wrong and and how
maximum likelihood fixes the problem in a very

simple toy example which illustrates the
problem clearly and and is the appropriate

physics model for event histograms. We then
note how a simple modification to the  method
gives a result almost identical to the ML method.

χ2
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Consider a simple data set with only two bins.
Suppose theory predicts that the expected

value for the number of events in the bin ’N’ is
the same for each bin and that the bins are

uncorrelated. Let  and  be  the number of
events found experimentally in each bin. The

variance ( ) is N for each bin, 

x1 x2

σ2 σ = N

χ2 =
(N − x1)2

σ2
+

(N − x2)2

σ2
.
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We want to find the minimum,

χ2 =
(N − x1)2

σ2
+

(N − x2)2

σ2
.

Call Term 1 the derivative of the  with respect
to the  numerators of the . Term 1 =

.

χ2

χ2

2
(N − x1 + N − x2)

N
= 2(1 −

x1

N
) + 2(1 −

x2

N
)

If we ignore the derivative of the denominator, 
then Term 1 =0, is solved by 

N = (x1 + x2)/2
Call this the naive solution
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Call Term 2 the derivative with respect to the
denominator of the :

Term 2 is negative and of the order of 1.
The only way that Term 1 + Term 2 =0 is for
Term 1 to be positive. This means that the 
solution must have N greater than the naive

value. Although Term 1 is O(1),  and 
are O(1/N). N is pulled up as the fit wants to make

the fractional errors larger.

χ2

Term 2 = −
(N − x1)2 + (N − x2)2

N2
.

χ2

x1/N x2/N
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Suppose, incorrectly, one had used as a variance
the number of data events  rather than the

expected number of events (N). Had the
normalization been put into the data, then:

(xi)

χ2 =
(N − x1)2

x1
+

(N − x2)2

x2

Upon taking derivatives then instead of the 
desired  one gets the

averages of the inverses:

 

and the fitted curve is low

N = .5(x1 + x2)

2
N

=
1
x1

+
1
x2
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Next use maximum likelihood for our toy model.  
The likelihood (L) is the probability density function

for the two bins assuming each bin has a normal
distribution. (This requires that N is not too small.)

L =
1

2πσ2

1

2πσ2
e−(N−x1)2/(2σ2)e−(N−x2)2/(2σ2) .

L =
1

2πσ2
e−χ2/2

For , the log of the likelihood is:σ2 = N

ln L = − ln(2π) − ln N − χ2/2.
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Let  Term 3 be the derivative of the normalization.
Term 3 = .

The derivative of ln L is
Term 3 - (Term 1)/2 — (Term 2)/2.

Term 3 - (Term 2)/2 =

−1/N

−
1
N

+
(N − x1)2 + (N − x2)2

2N2

=
−2N + (N − x1)2 + (N − x2)2

2N2
.
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Since the expectation value of
,

  the expectation value of Term 3 —(Term 2)/2 =0.
E(N − x1)2 = E(N − x2)2 = N
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Assume now that there are  bins and there
are a total of  parameters to be fit including

an overall normalization. The  expectation
value for the minimum  is .  This occurs

because, after fitting, the multidimensional 
normal distribution loses  variables.

nb
nf

χ2 nb − nf

nf
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There is a simple general way to handle this.
Consider  bins and  fitting parameters, .
Let the expected number of events in bin  be

The distribution of experimental events in each bin
is taken as approximately normal.

The total number of events in each bin is not fixed.
Choose the set  as the basis.  The error matrix is 

diagonal in this basis.  We then use the ML method.

nb nf pj
i

ni

ni(p1, p2, ⋯, pnf
)



Ignoring the  constants:

The expectation value for the term in square 
brackets is zero.  

2π

ln L =
nb

∑
i=1

−
ln ni

2
−

(xi − ni)2

2ni
.

d ln L
dni

=
xi − ni

ni
+

1
2ni

[( (xi − ni)2

ni
) − 1] .
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Recall that the expectation refers to the average 
value over a number of repetitions of the 

experiment. It is xi that changes with each 
experiment not the theoretical expectation, ni. 

The expectation value of the term in square 
brackets will remain zero even if it is multiplied 

by a complicated function of the pj fitting
parameters.
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Ignoring this term leads to:

By expressing the  as appropriate functions
of the , the error matrix can be written in
terms of the .  However the derivative of
the inverse error matrix does not appear in

the transform of the above equation.

∂ ln L
∂pj

=
nb

∑
i=1

(xi − ni

ni
) ∂ni

∂pj
.

ni
pj

pj
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This result means that one can use a modified χ2 

approach. Use the usual χ2, but, when derivatives 
are taken to find the χ2 minimum, omit the
derivatives  of the inverse error matrix. The 

result is almost identical to the result from ML. 
The modified χ2 method should be generally used 

in place of the regular χ2 method. 
In practice, since the differences are not 

precisely the expectation values for a given 
experiment, there is a small residual higher 

order effect, which causes no bias on the average. 
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Practical Considerations
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If you are using one of the standard minimization routines
such as the CERN MINUIT routine then:

DO NOT MINIMIZE CHI-SQUARE!
It will effectively, take the derivative of the denominator.

INSTEAD:
Minimize minus the log of the likelihood which is just as easy

You will then get the correct fitted parameters
HOWEVER:

The errors will not yet be right. 



IN ODER TO GET THE ERRORS  
CORRECT:

21

The exponential term
in the maximum likelihood is not   ,

but is .
In MINUIT the default parameter is set to  1 to give the

correct value to go above the minimum for one standard
deviation for .

You need to set ERRORDEF to 0.5
and then you will have the correct errors. 

χ2/σ2

χ2/(2σ2)

χ2



Summary
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The problem with using the  method when one
of the parameters is the normalization of the

curve is solved by using the maximum likelihood method

A good approximation is to use the  method, but
not take the derivative of the inverse error matrix.

However, if you use a standard minimization routine 
such as the CERN MINUIT program, you need

to minimize, not  but minus the log of the
likelihood.

You then also need to set the error parameter from the
value for  to 1/2 of that value.

χ2

χ2

χ2

χ2



If there’s time: 
New topic: Feldman-Cousin’s method
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In the last few minutes I will turn to a different topic.  Many
of you are familiar with the Feldman-Cousins method

for constructing confidence belts:
Physical Review Vol.57 Number 7 (1998).

They apply it to a Poisson problem with expected background
.  For a possible signal  and a result , they investigate
the ratio , where “best” means

the  giving the highest probability for that value of .
Next they find a region in  by picking the highest
 until P=90% is reached. Having done this for a series

of  they have a confidence belt when this is looked at as a
function of .

b μ x
R = P(μ |x)/P(μbest |x)

μ x
x

R′�s
μ′ �s

x



They note that if the experimental result is
, then one should also look at the

“sensitivity”, the average upper limit which
would be obtained by an ensemble of

experiments with background  and no
true signal.  This can indicate a problem

qualitatively, but no quantitative suggestion.

 

x < b

b
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They were careful to insist that one only use
information before any fit is performed.  For
example if you make a decision after looking

at the data whether to quote upper limits only
or to quote upper and lower limits this would

cause a bias which they labelled “flip-flopping”.

However, they ignored the fact that one can
make some decisions after looking at the data

without bias.  For example, if there are n events
then the background for that set of data cannot

be greater than n. Their results are then true
compared to the total universe of all possible
results, but misleading if extra information is

available reducing the universe of results.
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As luck would have it, one of the early experiments
to which it was applied was the Karmen experiment

looking for an anomalous neutrino oscillation
appearance of  events which had been reported 

by the LSND experiment. Karmen expected
=3 and observed =0. Feldman and Cousins

listed a 90% CL as 1.08 events and sensitivity of
 4.42.  1.08 was in serious disagreement with the 

LSND result.
However, for this particular result, if there were
zero events observed, then there was zero signal

and zero background. From zero signal, all
one can conclude is the 90% CL is 2.4.  The

background is irrelevant.

νe

b x
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Together with a statistician M. Woodroofe we used a conditional 
probability  which worked very well for a Poisson

discrete problem.  However, for the second FC problem,
measuring  in a continuous distribution given a positive 

signal  with gaussian error ,  our method gave a 
positive lower limit for all positive observations, as pointed out to

us by R. Cousins.
We then suggested a Bayesian approach using credible intervals

which worked well
for both the Poisson and the continuous problem.

Byron P. Roe and Michael W. Woodroofe, Phys. Rev. D63, 013009 (2000).

P(x |b ≤ x)

x
θ Δ (x = θ + Δ)
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For the Bayesian solution, the prior was taken as the interval 
from 0 to infinity for the signal and then the credible region 

was arranged  to be the shortest possible region for  each 
possible signal . A slight modification was made at the
end to produce slightly better results.  The slides on the

next pages show the results before and after the
modifications.

On the slides:
RW old is the conditional probability result and 

RW2 and RW2 modified are the Bayes results
without and with  the final modification which brings

the credible limits closer to the CL for x>b.

μ



30

The price paid for these desirable properties is dependence
on the prior and metric. We address the first of these con-
cerns by showing that the frequentist coverage probability of
the Bayesian intervals is quite close to the Bayesian posterior
credible level. That is, while the two probabilities are con-
ceptually quite different, they are close numerically. In addi-

tion, we show that the Bayesian credible intervals have exact
conditional !frequentist" coverage probability, except for dis-
creteness in the Poisson case. With regard to the metric, it is
primarily the optimality of our procedures that depends on
the metric. See Sec. VII.
We will illustrate with two examples, a Poisson case in

which the mean is composed of an unknown signal mean #
$0 and a known background mean b and the measurement x
of a parameter #$0, with a measurement error % which is
normal !0,1". We use a uniform !improper" prior of 1 for 0
&#!' in both problems.

A. The continuous example

This is a simple problem in which the statistical issues are
clear and which approximates the Poisson problem for large
b"# . We measure x##"%, where #$0, and the density
function for x is

f !x!#"()!x$#"#
1

!2*
e$(1/2)(x$#)2. !1"

For the uniform prior probability pr(#)#1, the marginal
density of x becomes

f !x "#"
0

'

)!x$#"pr!#"d##+!x ",

where

+!x "("
$'

x
)!y "dy ,

the standard normal distribution function. We now use Bayes
theorem f (x!#)%pr(#)# f (#!x)% f (x). The conditional
density of # given x is

f !#!x "#
)!x$#"

+!x "
. !2"

f (#!x) is proper; the improper !infinite" prior has cancelled
out. We wish to find an upper limit u and a lower limit l,
dependent on x, for which

Prob,l&#&u!x-#1$. . !3"

In Bayes theory, such intervals are called credible intervals.
It is desirable to minimize the interval / l ,u0 , subject to Eq.
!3". We do that by picking #’s with the largest probability
density to be within the interval,

/ l ,u0#,#: f !#!x "$c-,

where 0&c&1/!2* is chosen to satisfy Eq. !3". Now,
f (#!x)$c if and only if !#$x!&d , where

d#!$2 ln c$ln!2*"$2 ln/+!x "0 .

There are two cases to be considered. If d&x , then the con-
dition !3" becomes

FIG. 1. The 90% C.L. belt for a Poisson probability with b
#3, using the old RW procedure !solid line" and the Feldman-
Cousins unified procedure !dashed line".

FIG. 2. The 90% C.L. belt for the continuous probability ex-
ample, using the old RW procedure !solid line" and the Feldman-
Cousins unified procedure !dashed line".

BYRON P. ROE AND MICHAEL B. WOODROOFE PHYSICAL REVIEW D 63 013009

013009-2

Old RW refers to the conditional probability used for the Poisson example.
RW and RW2 refer to the Bayesian result for the continuous example

without and with the ad hoc addition shown. For RW2, and a confidence
limit of 90%, the RW2 credible limit is at least 90% to 3 decimal

places.  For RW the credible limit is >86%.

l(x)!"!u(x) or, equivalently, !d(x)!#!a(x). In the
Appendix, it is shown that if x!""##! is an independent
copy of x, then

Prob"$!d%x &!#!!a%x &!#!!x'"1!(

and $ l(x),u(x)' is the shortest interval with these properties.

B. The Poisson example

As in the continuous case, the conventional coverage is
not exact in the Poisson case. For b"3 and 1!("0.9, for
example, the conventional coverage varies from about 86%
to 96.6%. Figure 6 shows the resulting confidence belt for
b"3,("0.1.
The conditional coverage is shown in the Appendix to be

)1!( , except for discreteness.

FIG. 4. The 90% C.L. belt using the Bayesian procedure %solid
line& and the conservative modification %dashed line& for the con-
tinuous example. The old RW upper limit and the F-C unified
method lower limit are shown as dotted lines.

FIG. 3. The 90% C.L. belt plotted as "!x vs x using the
Bayesian procedure and a conservative modification %dashed& for
the continuous example.

FIG. 5. The conventional frequentist coverage for a Bayesian
90% C.L. belt for the Bayesian continuous model %solid line& and
the conservative modification %dashed line&.

FIG. 6. The 90% C.L. belt for the Poisson distribution with b
"3 using the Bayesian procedure and the old RW procedure
%dashed line&.

BYRON P. ROE AND MICHAEL B. WOODROOFE PHYSICAL REVIEW D 63 013009
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Conclusion
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The Feldman Cousins method of selecting confidence belts
is quite useful, obtaining compact belts and automatically 

going from one-sided to two-sided limits.  
However, it has a problem when faced with experiments

obtaining values less than estimated backgrounds.
For the Poisson distribution, the conditional

probability  solves the problem.  For
the continuous example a Bayesian analysis is used.

P(μ |b < n)


