BAYESIAN ANALYSIS AND INTERPRETATION OF HEAVY-ION COLLISIONS

Motivations & Goals Challenges & Methods Results & Interpretations

Scott Pratt

Department of Physics and Astronomy,

National Superconducting Cyclotron Laboratory

& Facility for Rare Isotope Beams

Michigan State University

Bayesian Parameter Determination

Method

S. Habib, K. Heitmann, D. Higdon, C. Nakhleh, B. Williams, PRD 76(2007) 083503 J.Novak, K. Novak, S. Pratt, J. Vredevoogd, C. Coleman-Smith, R. Wolpert, PRC 89 (2014) 034917

Heavy-Quark Diffusivity

Y.Xu, J.Bernhard, S.A.Bass, S.Cao, PRC 97 (2018) 014907

Initial State Parameterization

W.Ke, J.Scott Moreland, J.E. Bernhard, S.A.Bass, PRC 96 (2017) 044912 J.Bernhard, J.Scott Moreland, S.A. Bass, PRC 94 (2016) 024907 J.Scott Moreland, J.E. Bernhard, S.A. Bass, nucl-th 1808:0216 S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301

Jet Energy Loss

R.Soltz, JETSCAPE, Hard Probes Proc. (2019) DOI 10.22323/1/345.0048

Viscosity

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301 J.Auvinen, J.E. Bernhard, S.A. Bass, I.Karpenko, PRC 97 (2018) 044905

Equation of State

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301

GOAL: Determine Likelihood

GOAL: Determine Likelihood

$$\mathcal{L}(\vec{x}) \sim \exp\left\{-\sum_{a} \frac{(y_a^{(m)}(\vec{x}) - y_a)^2}{2\sigma_a^2}\right\}$$

Sample likelihood with MCMC

CHALLENGES

- 1. Expensive Model
- 2. Heterogenous Data
- 3. Expressing Uncertainties:
 - --- "systematic" model error (missing physics)
 - competing models (jet physics)
 - correlated errors (especially for theory)

$$\mathcal{L}(\vec{x}) \sim \exp\left\{-\sum_{a} \frac{(y_{a}^{(m)}(\vec{x}) - y_{a})^{2}}{2\sigma_{a}^{2}}\right\}$$
$$\mathcal{L}(\vec{x}) \sim \exp\left\{-\frac{1}{2}\sum_{ab}(y_{a}^{(m)}(\vec{x}) - y_{a})\Sigma_{ab}^{-1}(y_{b}^{(m)}(\vec{x}) - y_{b})\right\}$$

Distilling Heterogenous Data

- **1.Experiments reduce PBs to 100s of plots**
- 2.Choose which data to analyze Does physics factorize?
- 3.Reduce each plot to a few values, y_a (use principle components)
- 4. Calculate global principal components, za
- 5.Resolving power of RHIC/LHC data reduced to ≈10 numbers!

Correlated Uncertainties

- 1. Distill plots to small number of principal components*
- 2. Implement error matrix
- 3. "Nuisance" parameters

$$\frac{dN}{dp} = \frac{dN^{(m)}}{dp} + \alpha e^{-p/\lambda}...$$

MCMC may need to repeat model millions of times — intractable

Gaussian Process Emulator

- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained,
 - i.e. find "hyper parameters"
- Other methods also work

x (arb)

Results & Interpretation

To address these issues:

MADAI Collaboration Models and Data Analysis Initiative (active 2010-2017)

MICHIGAN STATE Duke

THE UNIVERSITY of NORTH CAROLINA ACHAPEL HILL

Ist MADAI Collaboration Meeting, SANDIA 2010

RHIC/LHC Global Analysis

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301

Parametric Initial State & Viscous Hydro & Hadron Cascade 14 Parameters (All for hydro)

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

RHIC Au+Au (100+100 GeV) LHC Pb+Pb 30 Observables

- • π ,K,p Spectra $\langle p_t \rangle$, Yields
- Interferometric Source Sizes
 v₂ Weighted by pt

Likelihood

Initial State Parameters

(energy, WN vs. cgc, saturation, collective flow, SE tensor anisotropy)

$$\epsilon(\tau = 0.8 \text{fm}/c) = f_{\text{wn}} \epsilon_{\text{wn}} + (1 - f_{\text{wn}}) \epsilon_{\text{cgc}},$$

$$\epsilon_{\text{wn}} = \epsilon_0 T_A \frac{\sigma_{\text{nn}}}{2\sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_B)\} + (A \leftrightarrow B)$$

$$\epsilon_{\text{cgc}} = \epsilon_0 T_{\min} \frac{\sigma_{\text{mn}}}{\sigma_{\text{sat}}} \{1 - \exp(-\sigma_{\text{sat}} T_{\text{max}})\}$$

$$T_{\min} \equiv \frac{T_A T_B}{T_A + T_B},$$

$$T_{\max} \equiv T_A + T_B,$$

$$u_{\perp} = \alpha \tau \frac{\partial T_{00}}{2T_{00}}$$

$$T_{zz} = \gamma P$$

5 parameters for RHIC, **5** for LHC

Equation of State and Viscosity

$$c_s^2(\epsilon) = c_s^2(\epsilon_h) + \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2},$$

$$X_0 = X' R c_s(\epsilon) \sqrt{12},$$

$$x \equiv \ln \epsilon / \epsilon_h$$

$$\frac{\eta}{s} = \left(\frac{\eta}{s}\right|_{T=165} + \kappa \ln(T/165)$$

2 parameters for EoS, 2 for η/s

S.P., E.Sangaline, P.Sorensen & H.Wang, PRL 2015 RHIC Au+Au and LHC Pb+Pb Data 14 parameters, include Eq. of State

14x14 Posterior Likelihood

Sample HBT from Prior and Posterior

What should you expect for η /s at T=165 MeV?

- ADS/CFT: 0.08
- Perturbative QCD: > 0.5 ($\sigma \approx 3 \text{ mb}$)
- Hadron Gas: \approx 0.2 ($\sigma \approx$ 30 mb)

RESOLVING POWER OF OBSERVABLES

How does changing $y_{a,exp}$ or σ_a alter $\langle\langle x_i \rangle\rangle$ or $\langle\langle \delta x_i \delta x_j \rangle\rangle$?

We need
$$\frac{\partial}{\partial y_a^{(\exp)}} \langle \langle x_i \rangle \rangle \operatorname{NOT} \frac{\partial}{\partial x_i} y_a^{(\mathrm{mod})}$$

From covariances form MCMC trace + linear algebra....

E.Sangaline and S.P., arXiv 2015

RESOLVING POWER OF OBSERVABLES

$$\langle \langle x_i \rangle \rangle = \frac{\langle x_i \mathcal{L} \rangle}{\langle \mathcal{L} \rangle}$$

 $\frac{\partial}{\partial y_a^{(\exp)}} \langle \langle x_i \rangle \rangle = \langle \langle x_i (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle - \langle \langle x_i \rangle \rangle \langle \langle (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle$

$$= \langle \langle \delta x_i (\partial_a \mathcal{L}) / \mathcal{L} \rangle \rangle$$

= $-\Sigma_{ab}^{-1} \langle \langle \delta x_i \delta y_b \rangle \rangle$ (for Gaussian)

 $\delta x_i = x_i - \langle \langle x_i \rangle \rangle, \quad \delta y_a = y_a - y_a^{(\exp)}$

can find similar relation for

$$\frac{\partial}{\partial \sigma_a} \langle \langle \delta x_i \delta x_j \rangle \rangle$$

E.Sangaline and S.P., PRC 2016

What determines EoS?

- Lots of observables
- Femtoscopic radii are important

What determines viscosity?

- $\bullet \ Both \ v_2 \ and \ multiplicities$
- \bullet T-dependence comes from LHC v_2

Validated collective wisdom of field

CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters & more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- ★ Extends to other observables: diffusivity, jets, Eq. of state for μ_B≠0
- Heavy-Ion Physics can be a Quantitative Science!!!!

Bayesian for Heavy-Ion Physics Challenges Going Forward

- 1. Faithful representation of uncertainty
 - needs discussion
- 2. RHIC Beam Energy Scan
 - 3 D, more energies, include fluctuations
 - 1000s x more numerically expensive
- 3. Compare/Combine/Choose competing models