BAYESIAN ANALYSIS AND INTERPRETATION OF HEAVY-ION COLLISIONS

- Motivations \& Goals
- Challenges \& Methods
- Results \& Interpretations

Scott Pratt
Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory \& Facility for Rare Isotope Beams Michigan State University

Bayesian Parameter Determination

Method

S. Habib, K. Heitmann, D. Higdon, C. Nakhleh, B. Williams, PRD 76(2007) 083503 J.Novak,K. Novak,S. Pratt,J. Vredevoogd,C. Coleman-Smith, R. Wolpert, PRC 89 (2014) 034917

Heavy-Quark Diffusivity

Y.Xu,J.Bernhard, S.A.Bass, S.Cao, PRC 97 (2018) 014907

Initial State Parameterization

W.Ke, J.Scott Moreland, J.E. Bernhard, S.A.Bass, PRC 96 (2017) 044912 J.Bernhard, J.Scott Moreland, S.A. Bass, PRC 94 (2016) 024907
J.Scott Moreland, J.E. Bernhard, S.A. Bass, nucl-th 1808:0216
S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301 Jet Energy Loss
R.Soltz, JETSCAPE, Hard Probes Proc. (2019) DOI 10.22323/1/345.0048

Viscosity

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301
J.Auvinen, J.E. Bernhard, S.A. Bass, I.Karpenko, PRC 97 (2018) 044905

Equation of State

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301

GOAL: Determine Likelihood

$\underset{\left(\text { parameters, } \mathbf{x}_{\mathbf{i}}\right)}{\mathrm{MODEL} \mathbf{y}_{\mathbf{a}}(\mathbf{x}} \longrightarrow \mathcal{L}(\vec{x}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(m)}(\vec{x})-y_{a}\right)^{2}}{2 \sigma_{a}^{2}}\right\}$

Experiment (petabytes)

GOAL: Determine Likelihood

$\mathcal{L}(\vec{x}) \sim \exp \left\{-\sum_{a} \frac{\left.y_{a}^{(m)}(\vec{x})-y_{a}\right)^{2}}{2 \sigma_{a}^{2}}\right\}$

Sample likelihood with MCMC

Hamiltonian Monte Carlo

CHALLENGES

1. Expensive Model
2. Heterogenous Data
3. Expressing Uncertainties:
—"systematic" model error (missing physics)
— competing models (jet physics)

- correlated errors (especially for theory)
$\mathcal{L}(\vec{x}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(m)}(\vec{x})-y_{a}\right)^{2}}{2 \sigma_{a}^{2}}\right\}$
$>\mathcal{L}(\vec{x}) \sim \exp \left\{-\frac{1}{2} \sum_{a b}\left(y_{a}^{(m)}(\vec{x})-y_{a}\right) \Sigma_{a b}^{-1}\left(y_{b}^{(m)}(\vec{x})-y_{b}\right)\right\}$

Distilling Heterogenous Data

1.Experiments reduce PBs to 100s of plots
2.Choose which data to analyze Does physics factorize?
3.Reduce each plot to a few values, ya (use principle components)
4.Calculate global principal components, z_{a}
5.Resolving power of RHIC/LHC data reduced to $\$ 10$ numbers!

Correlated Uncertainties

1. Distill plots to small number of principal components ${ }^{\star}$
2. Implement error matrix
3. "Nuisance" parameters

$$
\frac{d N}{d p}=\frac{d N^{(\mathrm{m})}}{d p}+\alpha e^{-p / \lambda} \ldots
$$

*applied here

Expensive Models

MCMC may need to repeat model millions of times

- intractable

Gaussian Process Emulator

- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained,
i.e. find "hyper parameters"
- Other methods also work

Results \& Interpretation

MADAI Collaboration
To address these issues:
Models and Data Analysis Initiative (active 2010-2017)

Ist MADAI Collaboration Meeting, SANDIA 2010

RHIC/LHC Global Analysis

S.Pratt, E.Sangaline, P.Sorensen and H.Wang, PRL 114 (2015) 202301

Parametric Initial State \& Viscous Hydro \& Hadron Cascade 14 Parameters (All for hydro)

RHIC Au+Au (100+100 GeV) LHC Pb+Pb 30 Observables
$\bullet \pi, K, p$ Spectra $\left\langle\mathbf{p}_{\mathbf{t}}\right\rangle$, Yields

- Interferometric Source Sizes
${ }^{-} \mathrm{v}_{2}$ Weighted by p_{t}

Likelihood

Initial State Parameters

(energy, WN vs. cgc, saturation, collective flow, SE tensor anisotropy)

$$
\begin{aligned}
\epsilon(\tau=0.8 \mathrm{fm} / c) & \left.=f_{\mathrm{wn}}\right) \epsilon_{\mathrm{wn}}+\left(1-f_{\mathrm{wn}}\right) \epsilon_{\mathrm{cgc}}, \\
\epsilon_{\mathrm{wn}} & \left.=\epsilon_{0} I\right) A \frac{\sigma_{\mathrm{nn}}}{2\left(\sigma_{\mathrm{sat}}\right.}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{B}\right)\right\}+(A \leftrightarrow B) \\
\epsilon_{\mathrm{cgc}} & =\epsilon_{0} T_{\min } \frac{\sigma_{\mathrm{In}}}{\sigma_{\mathrm{sat}}}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{\max }\right)\right\} \\
T_{\min } & \equiv \frac{T_{A} T_{B}}{T_{A}+T_{B}}, \\
T_{\max } & \equiv T_{A}+T_{B}, \\
u_{\perp} & =\alpha \lambda \frac{\partial T_{00}}{2 T_{00}} \\
T_{z z} & =\gamma \gamma P
\end{aligned}
$$

5 parameters for RHIC, 5 for LHC

Equation of State and Viscosity

$$
\begin{aligned}
c_{s}^{2}(\epsilon) & =c_{s}^{2}\left(\epsilon_{h}\right) \\
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+\left(X^{\prime 2}\right.}, \\
X_{0} & =X\left({ }^{\prime} g_{s}(\epsilon) \sqrt{12},\right. \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$

$$
\frac{\eta}{s}=\left(\left.\frac{\eta}{s}\right|_{T=16 \sigma}+\kappa \ln (T / 165)\right.
$$

2 parameters for EoS, 2 for η / s
S.P., E.Sangaline, P.Sorensen \& H.Wang, PRL 2015 RHIC $\mathrm{Au}+\mathrm{Au}$ and LHC $\mathrm{Pb}+\mathrm{Pb}$ Data 14 parameters, include Eq. of State
14×14
Posterior Likelihood

Sample Spectra from Prior and Posterior

Sample HBT from Prior and Posterior

$$
\eta / s=(\eta / s)_{0}
$$

$$
+\kappa \ln (T / 165)
$$

What should you expect for η / s at $T=165 \mathrm{MeV}$?

- ADS/CFT: 0.08
- Perturbative QCD: > 0.5 ($\sigma \approx 3 \mathrm{mb}$)
- Hadron Gas: $\quad \approx 0.2(\sigma \approx 30 \mathrm{mb})$

Extracted η / s at $T=165$ MeV consistent with expectations for hadron gas!

Does not rise strongly in QGP

RESOLVING POWER OF OBSERVABLES

How does changing $\mathrm{y}_{\mathrm{a}, \exp }$ or σ_{a} alter $\left\langle\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle\right\rangle$ or $\left\langle\left\langle\delta \mathrm{x}_{\mathrm{i}} \delta \mathrm{x}_{\mathrm{j}}\right\rangle\right\rangle$?

$$
\text { We need } \frac{\partial}{\partial y_{a}^{(\exp)}}\left\langle\left\langle x_{i}\right\rangle\right\rangle \text { NOT } \frac{\partial}{\partial x_{i}} y_{a}^{(\bmod)}
$$

From covariances form MCMC trace + linear algebra....

RESOLVING POWER OF OBSERVABLES

$$
\begin{aligned}
\left\langle\left\langle x_{i}\right\rangle\right\rangle= & \frac{\left\langle x_{i} \mathcal{L}\right\rangle}{\langle\mathcal{L}\rangle} \\
\frac{\partial}{\partial y_{a}^{(\exp)}}\left\langle\left\langle x_{i}\right\rangle\right\rangle= & \left\langle\left\langle x_{i}\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle-\left\langle\left\langle x_{i}\right\rangle\right\rangle\left\langle\left\langle\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle \\
= & \left\langle\left\langle\delta x_{i}\left(\partial_{a} \mathcal{L}\right) / \mathcal{L}\right\rangle\right\rangle \\
= & -\Sigma_{a b}^{-1}\left\langle\left\langle\delta x_{i} \delta y_{b}\right\rangle\right\rangle \quad \text { (for Gaussian) } \\
& \quad \delta x_{i}=x_{i}-\left\langle\left\langle x_{i}\right\rangle\right\rangle, \quad \delta y_{a}=y_{a}-y_{a}^{(\exp)}
\end{aligned}
$$

can find similar relation for $\frac{\partial}{\partial \sigma_{a}}\left\langle\left\langle\delta x_{i} \delta x_{j}\right\rangle\right\rangle$
E.Sangaline and S.P., PRC 2016

What determines EoS?

- Lots of observables
- Femtoscopic radii are important

What determines viscosity?

- Both V_{2} and multiplicities
- T-dependence comes from LHC v2

Validated collective wisdom of field

CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters \& more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- Extends to other observables: diffusivity, jets, Eq. of state for $\mu \mathrm{B} \neq \mathbf{0}$
- Heavy-Ion Physics can be a Quantitative Science!!!!

Bayesian for Heavy-Ion Physics Challenges Going Forward

1. Faithful representation of uncertainty

- needs discussion

2. RHIC Beam Energy Scan

- 3 D, more energies, include fluctuations
- 1000s x more numerically expensive

3. Compare/Combine/Choose competing models
