Uncertainty quantification in nuclear reactions

Filomena Nunes
Michigan State University

In collaboration with:
Amy Lovell, Garrett King, Manuel Rios (MSU) Stephan Wild and Jason Sarich (ANL)

What is the UQ problem:

We develop a hypothesis (model)

We confront it with reality (data)

How good is the model?
Is model A better than model B ?
How do I mix model A with model B ?

Outline

1. What is the nuclear physics problem?
2. What is the UQ problem?
3. UQ with simple frequentist approach
4. Comparison Bayesian and frequentist UQ
5. Exploring experimental conditions with Bayesian UQ
6. Outlook

The nuclear physics context Where did nuclei come from? How were they

 produced?

neutron star merger

r-process nucleosynthesis and rare isotopes

r-process: how do we measure neutron capture on unstable nuclei?

$\diamond(\mathrm{n}, \mathrm{g})$ cross sections on unstable nuclei: Currently Impossible!

$\diamond(\mathrm{d}, \mathrm{p})$ cross section offers an indirect measurement!
$\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}$

($\sigma \sim \mathrm{mb}$)

What is the nuclear physics problem: how certain are our reaction predictions?

A(d,p)B

Deuteron induced reactions typically treated as a threebody problem

Deltuva, PRC91, 024607 (2015)

What is the UQ problem:

We develop a hypothesis (model)

> optical model
> $[\mathrm{T}+\mathrm{U}(\mathrm{R})-\mathrm{E}] \Phi=0$

We confront it with reality (data) typically elastic scattering angular distributions

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

How good is the model?
${ }^{10^{1}} 95 \%$ confidence bands

What are the parameters of the model?

Optical potentials (assumed local to reduce computational time)

$$
U(r)=V(r)+i W(r)+\left(V_{s o}(r)+i W_{s o}(r)\right)(\mathbf{l} \cdot \mathbf{s})+V_{C}(r)
$$

Parameters:

Volume real Vra
Volume imaginary $W r_{w} a_{w}$
Surface imaginary $\mathrm{V}_{\mathrm{s}} \mathrm{r}_{\mathrm{s}} \mathrm{a}_{\mathrm{s}}$
Spin-orbit real $V_{s} r_{s} a_{s}$ Spin-orbit imaginary $V_{s} r_{s} a_{s}$
 Coulomb r_{c}

Standard Chi2 minimization

- Pull 200 sets from Chi2 distribution
- Create 95% confidence intervals by removing 2.5% top and 2.5% bottom of the predicted observables

Lovell, Nunes, Sarich, Wild, PRC 95,024611 (2017)

Chi2 minimization and correlations

Previously: Uncorrelated Model

- Data and residuals are normally distributed $\left[d_{1}, \ldots, d_{p}\right]^{T} \sim \mathcal{N}(\mu, \Sigma)$
$\left[m\left(\mathbf{x} ; \theta_{1}\right)-d_{1}, \ldots, m\left(\mathbf{x} ; \theta_{p}\right)-d_{p}\right]^{T} \sim \mathcal{N}(0, \Sigma)$
- With covariance matrix
$\Sigma_{i i}=\sigma_{i}^{2}$
- Leads to the minimization function

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

Instead: For a Correlated Model

- Model is also normally distributed

$$
\left[m\left(\mathbf{x} ; \theta_{1}\right), \ldots, m\left(\mathbf{x} ; \theta_{p}\right)\right]^{T} \sim \mathcal{N}\left(\mu, \mathbb{C}_{m}\right)
$$

- Residuals then have the distribution

$$
\left[m\left(\mathbf{x} ; \theta_{1}\right)-d_{1}, \ldots, m\left(\mathbf{x} ; \theta_{p}\right)-d_{p}\right]^{T} \sim \mathcal{N}\left(0, \mathbb{C}_{m}+\Sigma\right)
$$

- With covariance matrix

$$
\mathbb{C}_{m}+\Sigma
$$

- Leads to the minimization function

$$
\begin{aligned}
\chi^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}\right)\left(m\left(\mathbf{x} ; \theta_{j}\right)-d_{j}\right) \\
W & =\left(\mathbb{C}_{m}+\Sigma\right)^{-1}
\end{aligned}
$$

Chi2 minimization and correlations

Correlated Chi2 produces wider confidence intervals

Lovell, Nunes, Sarich, Wild, PRC 95,024611 (2017)

What is the model for (d, p) reactions?

DWBA: distorted wave Born approximation

Exact T-matrix for $\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}$ in POST from:

$$
T_{p o s t}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right)>
$$

Take first term of Born series: $\Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right) \rightarrow \phi_{n p} \chi_{d A}$

$$
T_{\text {post }}^{D W B A}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \phi_{n p} \chi_{d A}>
$$

What is the model for (d, p) reactions?

DWBA: distorted wave Born approximation

$$
\Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right) \rightarrow \phi_{n p} \chi_{d A}
$$

What is the model for (d, p) reactions?
 ADWA: Adiabatic wave approximation

Exact T-matrix for $\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}$ in POST from:
Johnson and Tandy, NPA1974

$$
T_{\text {post }}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right)>
$$

Adiabatic wave approximation:
3B wave function expanded in
Weinberg states

$$
\Psi^{\text {exact }}=\sum_{i=0}^{\infty} \phi_{i}(\vec{r}) \chi_{i}(\vec{R})
$$

$$
\left(T+\lambda_{i} V_{n p}-\epsilon_{d}\right) \phi_{i}=0
$$

finite range adiabatic approximation

$$
\begin{aligned}
& U_{i j}(\vec{R})=-\left\langle\phi_{i}\right| V_{n p}\left(U_{n A}+U_{p A}\right)\left|\phi_{j}\right\rangle \\
& \text { Typically, only keep the first } \\
& \text { Weinberg State } \quad \Psi^{a d} \approx \phi_{0}(\vec{r}) \chi_{0}(\vec{R})
\end{aligned}
$$

What is the model for (d, p) reactions?

ADWA: Adiabatic wave
$T^{(d, p)}=\left\langle\phi_{A n} \chi_{p}\right| V_{n p}\left|\phi_{d} \chi_{d}^{a d}\right\rangle^{\text {approximation }}$
proton elastic data (exit channel)

$U_{i j}(\vec{R})=-\left\langle\phi_{i}\right| V_{n p}\left(U_{n A}+U_{p A}| | \phi_{j}\right\rangle$ (entrance channel)

Chi2 minimization: transfer predictions

Uncorrelated: which
model is better? data
looks like a mix of
ADWA and DWBA...

Correlated: Uncertainties are too large to discriminate between models

Limitations of the frequentist approach

Philosophical aspects:

- Probability as frequency: number of events over a total number of trails
- A 95\% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.
- There is no way to include UQ on events that cannot be repeated (e.g. how likely is it that the power will fail during this talk?).

Practical aspects:

- Problem with local minima versus the global minimum
- Inclusion of prior knowledge comes through ranges allowed for parameters
- potential for introducing biases
- What is the correct Chi2 function that includes the correct correlations in the theoretical model?

Bayes' theorem

$P($ green,red $)=5 / 9 \times 4 / 9$
$P($ red,green $)=4 / 9 \times 5 / 9$
$\mathrm{P}($ green, red $)=\mathrm{P}($ red, green $)$

Bayesian statistics

Thomas Bayes (1701-1761)

Bayes' Theorem

$P(\mathcal{H} \mid \mathcal{D})=$
$\frac{P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})}{P(\mathcal{D})}$
Posterior - probability that the model/parameters are correct after seeing the data

Prior - what is known about the model/ parameters before seeing the data

Likelihood - how well the model/parameters describe the data $p(D \mid H)=e^{-\chi^{2} / 2}$

Evidence - marginal distribution of the data given the likelihood and the prior

Markov Chain Monte Carlo (MCMC) $p\left(H_{i}\right) p\left(D \mid H_{i}\right)$

Randomly choose new parameters

$$
p\left(H_{f}\right) p\left(D \mid H_{f}\right)
$$

$$
R<\frac{p\left(H_{f}\right) p\left(D \mid H_{f}\right)}{p\left(H_{i}\right) p\left(D \mid H_{i}\right)}
$$

Comparing frequentist and Bayesian

- Probability as frequency
- A 95\% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.

Practical aspects:

- local minima
- ranges allowed for parameters potential for introducing biases
- correlations in the theoretical model?
- Probability as degree of belief
- Posterior distribution updates our degree of belief on the model, in light of the data
- A 95\% confidence interval means, given the data, what are the parameter ranges of the model for a 95% degree of belief.

Practical aspects:

- Markov Chain Monte Carlo (MCMC) spans full space and is fully automated
- Inclusion of prior (reduction of biases)
- Correlations automatically included
- Computationally more expensive

The Bayesian Conspiracy: "What matters is that Bayes is cool, and if you don't know Bayes, you aren't cool."

Yudkowsky offers to decode the secret:

Maybe you see the theorem, and you understand the theorem, and you can use the theorem, but you can't understand why your friends and/or research colleagues seem to think it's the secret of the universe. Maybe your friends are all wearing Bayes' Theorem T-shirts, and you're feeling left out. Maybe you're a girl looking for a boyfriend, but the boy you're interested in refuses to date anyone who "isn't Bayesian".
What matters is that Bayes is cool, and ifyou don't know
Bayes, you aren't cool.

Optical model uncertainties: comparing frequentist and Bayesian

Percentage uncertainty uncertainty
width Empirical coverage

Cross section angular distributions

Optical model uncertainties: comparing frequentist and Bayesian

King, Lovell, Neufcourt, Nunes PRL (2019)

Propagating optical model uncertainties to (d,p) comparing frequentist and Bayesian

Uncertainties are larger than previously thought

Need to explore ways to reduce optical potential uncertainties

King, Lovell, Neufcourt, Nunes PRL (2019)

Outline

1. What is the nuclear physics problem?
2. What is the UQ problem?
3. UQ with simple frequentist approach
4. Comparison Bayesian and frequentist UQ
5. Exploring experimental conditions with Bayesian UQ
6. Outlook

Exploring experimental conditions: Angular information

 ${ }^{208} \mathrm{~Pb}(\mathrm{n}, \mathrm{n})^{208} \mathrm{~Pb}$ at 30 MeV

${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})^{209} \mathrm{~Pb}$ at 61 MeV

Catacora-Rios, King, Lovell, Nunes; PRC submitted

Exploring experimental conditions: beam energy

${ }^{208} \mathrm{~Pb}(\mathrm{n}, \mathrm{n})^{208} \mathrm{~Pb}$ at 30 MeV

${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})^{209} \mathrm{~Pb}$ at 61 MeV

Catacora-Rios, King, Lovell, Nunes; PRC submitted

Exploring experimental conditions: exp error bar

Reaction	$\Delta \varepsilon_{20 / 10}$	$\Delta \varepsilon_{10 / 5}$
${ }^{48} \mathrm{Ca}(\mathrm{n}, \mathrm{n})$ at 12 MeV	1.53	1.94
${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{p})$ at 12 MeV	1.68	1.71
${ }^{48} \mathrm{Ca}(\mathrm{p}, \mathrm{p})$ at 21 MeV	1.55	1.74
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ at 21 MeV	1.68	1.52
${ }^{208} \mathrm{~Pb}(\mathrm{n}, \mathrm{n})$ at 30 MeV	1.62	1.79
${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{p})$ at 30 MeV	1.39	1.61
${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{p})$ at 61 MeV	1.99	1.74
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$ at 61 MeV	1.41	1.58

Exploring experimental conditions: adding total (reaction) cross section

${ }^{208} \mathrm{~Pb}(\mathrm{n}, \mathrm{n})^{208} \mathrm{~Pb}$ at 30 MeV

${ }^{08} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})^{209} \mathrm{~Pb}$ at 61 MeV

Catacora-Rios, King, Lovell, Nunes; PRC submitted

Conclusions

- Frequentist approach is not reliable: high confidence intervals to strongly overestimate the level of confidence on should have in the predictions
- Bayesian approach shows large uncertainties, larger than originally thought.
- Also reveals different picture for parameter correlations
- Still hard to discern between models so exploring ways to decrease uncertainty:
- Using additional data at nearby energies
- Using total/reaction cross sections in addition to elastic

Outlook

Diversify the data to reduce uncertainties:

- Including polarization data
- Including charge exchange angular distributions

Model comparison, model mixing and model error?
How good is the model?
Is model A better than model B ?
How do I mix model A with model B ?

Thank you for your attention!

In collaboration with:
Amy Lovell, Garrett King, Manuel Rios (MSU)

Stephan Wild and Jason Sarich (ANL)
Supported by: NSF

