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What is "Bayesian" inference?

Table 1.1 Frequentist and Bayesian approaches to probability.

Approach Probability definition

FREQUENTIST STATISTICAL

p(A) = long-run relative frequency with which
INFERENCE

A occurs in identical repeats of an
experiment.

“A” restricted to propositions about
random variables.

BAYESIAN INFERENCE p(A|B) = a real number measure of the

plausibility of a proposition/hypothesis A,
given (conditional on) the truth of the
information represented by proposition B.
“A” can be any logical proposition, not
restricted to propositions about random
variables.

P. Gregory, "Bayesian Logical Data Analysis for the Physical Sciences"
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Comparison of credible and confidence intervals

Bayesian probability: Frequentist probability:
o probabilities treated as degree of e probability is long-run frequency
plausibility e relies on the idea of identical
e more natural interpretation for repeats

quantities like model parameters

p% credible interval: there is p% P% confidence interval: will cover the
probability that the true, unknown true value of the quantity over p% of
value lies in the interval experiments

el I

Z
T T

See references for more nuance, philosophy, and debates.
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Uncertainty Quantification in Nuclear Physics

To produce meaningful experimental measurements and theoretical
predictions, it is essential to quantify uncertainties!

Yih + 0Yih = Yexp + 0Vexp

Theory discrepancy:

0Yth
Made up of the following:
e missing physics
e numerical/ method errors
o fitting to uncertain data

Notes:

o likely to be "systematic"
o not usually fully quantified
e often assumed to be normal

Experimental discrepancy:
0Yexp
Made up of the following:

e counting statistics
e background and selection effects
e gsystematic uncertainties

Notes

e systematic errors may not be well
understood or inflated
e often assumed to be normal
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Practical details

Probability of A being true given that B is true:
p(A|B)

e "Given information": inclusion of prior information (physics!)
e Bayesian pdfs follow all the same rules of probability:

p(A|B) + p(A|B) = 1
p(A, B|C) = p(A|C)p(B|A, C)
= p(B|C)p(A|B, C)
e Bayes theorem is a simple rearrangement of the product rule:

p(B|A, O)p(A|C)

p(A|B,C) = 2(BIC)

e Can develop prescriptions for combining sources of uncertainty
e Many frequentist procedures have a clear Bayesian interpretation.
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Uncertainty quantification issues

Main problem: given the available information, what is the probability

distribution (pdf) of uncertainties?

Entangled problems of UQ

Parameter estimation Model discrepancy

pdf of model parameters given quantify missing physics and
available data systematic effects as a pdf

Model comparison Validation

p(M1|D) vs. p(M2 | D): Bayes allows Is an uncertainty estimate valid,
pdf of hypothesis given data and how do we determine that?

And more... Design of experiments, sensitivity analysis, etc.
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Bayesian parameter estimation

Consider a model or theory with k parameters a= {ag, ay, ..., a,—1} which
we wish to constrain with N measured data D = {d, d>, ... ,dn}, given
background information /

Goal: estimate the pdf pr(a|D, /)
Bayes theorem allows us to actually compute this pdf:

pr(Dla, I) pr(all)

pr(a|D, I') = or (DI )

Names for each of these terms:

e Posterior: pr(a| D, I)

e Likelihood: pr(D|a, I)

e Prior: pr(a|/l)

e Evidence/ marginal likelihood (normalization factor):

pr(D| ) = / da pr(D|a, ) pr(all)
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Example parameter estimation problem

The problem (developed to mock up an effective field theory expansion):

e Generate synthetic data with indep. Gaussian noise from "real-world"
g(x)

1 2
g(x) = <— + tan(%x)) =025+ 1.57x +2.47x> + 1.29x> + ...

2

e Given data and series expansion, estimate coefficients of Taylor series
(about x = 0) up to some order. Truncated polynomial is the theory
gin(x) with k + 1 parameters a

k

gth(x) = Z a,x"

n=0

e This is linear optimization, unlike most problems in nuclear physics.

e Problem is simple but helpful for intuition about many statistical issues.

Schindler and Phillips, Annals Phys. 324, 3 (2009)
SW et al., JPG 43, 074001 (2016)
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Example parameter estimation problem

Given data D, estimate and plot the posterior pdf of the parameters d

The resulting pdf pr(Zi|D, /') can be used to propagate one piece of
uncertainty to the final prediction g = g + 0&. Here

08th = (5gth)params + (5gth)trunc
Also have due to truncation of the Taylor polynomial!

The data: D and "real world" function:
1.6}
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Example parameter estimation problem

pr(D|a, I) pr(d| )

pr(a|D, I) = 1D

becomes, with normal, independent data D = {d i}f\i , with standard

deviations {o; } i]\il and a uniform (bounded) prior pr(a|/) « 1

pr(a|D, I) e~ 12

where

- < d; — g i;_) ?
xz(a)=z< gah.(x a)>

i=1

This is the standard least-squares optimization result. For this example, it can

be solved analytically using standard results.
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Simple parameter estimation problem

What happens to this problem when you use least-squares?

pr(a|D, I) e~ 112

Underfitting: g, = Qo
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Simple parameter estimation problem

Use information that Taylor series coefficients are "natural” (EFT principle).

pr(al|l) « e
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More issues in this problem

e Check for robustness to the prior pdf pr(a| /)
e Include impact of higher-order terms (theory discrepancy)

k

g(x) = Z a,x" + i a,x"

n=0 n=k+1

e Simple to do in this linear problem, but nonlinear problems:
o not analytic
o sampling objective function can be costly

N N2
£2(d) = Z (di — 8:(361', a)>

i=1

o have to result to sampling: Markov Chain Monte Carlo (MCMC)
o non-normality, multimodality
e Validation
e UQ: theory discrepancy and parameter uncertainty (and everything else)
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Marginalization

Marginalization "integrates out" nuisance parameters by summing over a
complete set of possibilities:

pr(A) = [ dBp(A, B) = [ dBp(A|B)p(B)

Previous example: include effects of unconstrained higher-order terms!
Useful for introducing auxiliary parameters, e.g.:

pr(all) = [ da pr(ala, I) pr(al 1)

where a is the natural width of the prior. This can be used to avoid too tightly
specifying a single value for such a parameter.

But we must now specify a prior on the a.
Previous plots pr(a| /) = 6(a — 5)

Marginalization is used to plot and study pdfs as well, for example:

pr(a()lDa I) — /dal "'dak pr(alDa I) 14/20



Approximating a pdf as a histogram

Sampling
pr(a| D, I)
may be expensive for nonlinear problems and intensive observables.

We use MCMC sampling to evaluate the pdf at many values of @, and
histogram the samples obtained

Many flavors of MCMC on the market in a variety of languages.
Some python packages: emcee [used here], pymc3, pySTAN.

Also nested sampling: pyMultiNest
Sampling can still be infeasible. Get around the problem with emulation:

e Bayesian optimization Ekstrom et al. JPhysG 46, 9 (2019)
e Eigenvector continuation Frame et al., PRL 121 032501 (2018)

Conjugate priors can simplify things because posterior is analytic
see Melendez, SW, et al. PRC 100 (2019)
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Approximating a pdf as a histogram

Marginalization is trivial over various parameters, just use samples in the

parameters you want:
{w."\\{ﬂ,‘\\\\\%‘w /‘a\;ﬂw

A Q7 QT QF
agp a; az ag
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Quantitative model comparison with Bayes

Very generic formulation: model 1 (M) and model 2 (M>). Examples:

o totally different theories for a phenomenon
e hierarchical models (one order vs. next)
e anything else that can be used to compute data

Using Bayes theorem and assuming models are a priori equally likely

pr(My|D, 1) [ da,pr(@|D, )
pr(Mz|D, ) [ da, pr(a:| D, I)

"Evidence ratio" or "Odds factor"

o Expensive to compute if integrals are not analytic
o MCMC samples of the posterior don't help (need normalization!)
e Tricky to interpret

In our simple example, though, it is computable and has a clear interpretation
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Evidence calculation for Taylor series model

Compute evidence at ascending orders in theory k =0, 1,2, ...,
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Compare least-squares (brown squares) with Gaussian prior (blue diamonds)

Natural result of Occam's razor for LS result. Saturates for Gaussian prior. 18 /20



Our work using Bayes for yEFT

o The BUQEYE (Bayesian Uncertainty Quantification: Errors in Your EFT)
collaboration work with low-energy nuclear EFTs:
o parameter estimation of EFT low-energy constants
o using Gaussian processes to model EFT truncation error
o diagnostics to validate uncertainty estimates
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Summary

e Bayesian statistics is ideal for UQ problems in physics

o Explicit, quantitative incorporation of prior information

o Like traditional methods, it can be expensive to fully implement

e But taking the time to understand and sample pdfs can yield dividends

o proper inclusion of theory errors
o are pdfs Gaussian, and are covariance approximations justified?

e Many approximation methods (like MCMC sampling) and emulation
schemes are possible

e Visit the BUQEYE collaboration online at bugeye.github.io

e A very nice place to learn more about Bayes for nuclear physicists:

nucleartalent.github.io/Bayes2019/ 20/ 20
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